

Robotic astronomy,
Data managment,

the Virtual Observatory,
and software for small

astronomy research groups.

Ronan Cunniffe
(Blackrock Castle Observatory,
Cork Institute of Technology)

Malaga 19/05/2009

Credit: K. Geary

How similar are the data archive needs of
many/most/all astronomy research groups?

A searchable dataset, management tools;
Tolerant in what it can accept;

Standards-compliant in what it returns;
 Easily built on, to connect pipelines to;

Can I write a piece of archive software,
installed and configured like a webserver that,

for most people, Just Works™?

Cork, BOOTES, others?
BCO (CIT) BOOTES (IAA)

Images 750k(->5M) >1M

Volume 500GB(->10-20TB) >1TB

FITS types 8 ?

Pipeline Yes >1?

Search via FS? Yes (→ No) ...complicated!

New Instrument for BCO: ToΦcam (“ToffeeCam”):
 2 channel photometer (FT cameras, differential photometry)
 1-5 frames/sec....
 =100,000+ frames/night (0.5-1TB/night)
 Raw images → Reduced images → lightcurves
 Need for spot-checking raw & reduced images... clumsy!

How many pieces of the puzzle?
Scale:

- It must be easy to add extra capacity

Multi-dialect:
- It must handle any kind of FITS file (and be

able to search everything from a single query)

Hold data products too:
- know (or at least remember if told) which

files were reduced from which others, and how.

Easily worked with:
- wrappers need to be easy to write

No, everything won't be the same!

Holding the data
Database contains:

- headers only... nothing gained storing
images

- references to where images are stored

Means all requests are 2 phase:
1: Query the DB, get references (URLs!)
2: Retrieve from data servers (web servers!)

Scalability - just add web servers
Performance = network speed (*)
Performance = network latency (*) (always cache!)
Compatibility - breaks every script you have....

(but wrapping IRAF with wget/curl isn't that hard!)

(* If number-crunching machine is also a repository,
store popular data there, and get higher performance)

Holding the data
Database contains:

- headers only... nothing gained storing
images

- references to where images are stored

Means all requests are 2 phase:
1: Query the DB, get references (URLs!)
2: Retrieve from data servers (web servers!)

Scalability - just add web servers
Performance = speed of network
Compatibility - breaks everything!

(but is writing wget/curl wrappers around IRAF
that hard?)

FITS of recognition!
Dialect “A”:
...
EXPSECS = 5.0 / Exposure time in seconds
FILTER = 3 / Filter slot number
BAND = ' R' / Sloan filter

...
Dialect “B”:
...
EXPOSURE = 10 / Exposure time
FILTER = ' R' / Filter
FILTERNO = 3 / Filter slot number
...

A standard exists (for 53 basic headers), but many,
many FITS files do not follow it.

FITS of recognition!
Dialect “A”:
...
EXPSECS = <float> / Exposure time in seconds
FILTER = <int> / Filter slot number
BAND = <str> / Sloan filter

...
Dialect “B”:
...
EXPOSURE = <int> / Exposure time
FILTER = <str> / Filter
FILTERNO = <int> / Filter slot number
...

We can reasonably expect that the full set of
keywords in a FITS header are unique fingerprints

of the software that wrote it.

(okay, only probably unique..,)

From the beginning...

DB Webserver

(Both empty)

First data....

DB Webserver

Webserver: has copies of the files
DB: has pattern for Dialect 1

(First data, all from
Same source)

D1

More of the same...

DB Webserver

DB recognises new files as Dialect 1
(extra rows in table, no new structure)

(More data, same as
the first data)

D1

New Dialect

DB Webserver

DB does not recognise new files, adds new structure....

(New data, different
source)

A human needs to
compare them, builds
translation table

Query.....

DB Webserver

DB searches both dialects (because it now knows
how to translate)

Search terms are
Dialect 1 keywords

Query and reply.....

DB Webserver

DB searches both dialects (because it can translate)

Search terms are
Dialect 1 keywords

DB

Joint list

Results....

Webserver

Files returned
as stored

...or Results (Translated!)

Webserver

Files returned
as Dialect 1

...or Results (IVOA-SIAP!)

Webserver

To VO-aware application

Query and reply.....

DB Webserver

DB searches both dialects (because it can translate)

(VO query
e.g. conesearch)

DB

Conesearch reply

Implemented so far

- Database:
- import, dialect recognition work correctly
- query translations works
- some bad problems with evil data!
- ugly Python interface only

- Webserver:
- Can translate between different FITS dialects
- also can convert FITS files to JPG on-the-fly
- can store .DAT (headerless files) and build

FITS
on-the-fly.

Current dataset is 67K files in 6 dialects.

In development

- Database:
- management tools for moving data from

one webserver to another

- Webserver:
- Much better GUI....

- Toolkits:
- efficient network wrappers for IRAF.

- Future
- VO interface... (?)

Questions?

Suggestions for a name?

Current candidates:
BCOAT: Blackrock Castle Observatory Archive Toolkit
BBVO: Black Box Virtual Observatory

The archive as processing platform

The obvious: a program can be launched from outside,
using the DB search interface (via web, maybe RPC-
XML) to find work to do.

The automatic: a script can be attached to a dialect
profile in the DB (i.e. a particular data source).
Incoming data matching that dialect is imported and
stored as normal, then the URL is passed to the script.

The possibly unworkable..... using GUIDs as a form of
citation...

Status

Storage:
-

Managing reduced data
Bad answer:

“The person who reduced it has it on their laptop hard
disk somewhere. We think. They're at a conference on
Robotic Astronomy right now, is it urgent?”

(Not so) bad answer:
“All reduced data goes into the same directory as the

raw data, using an (informally?) agreed suffix/change to the
name. Sorry, we don't actually record which
flats/darks/version-of-pipeline was used.”

Good answer (?): “Reduced data is automatically uploaded
to the archive, referencing all the source frames, plus the
version of the pipeline software used (of which the archive
also has a copy). Searches on the data show the ”

Citing frames

Every frame gets a unique ID

“The person who reduced it has it on their laptop hard
disk somewhere. We think. They're at a conference on
Robotic Astronomy right now, is it urgent?”

(Not so) bad answer:
“All reduced data goes into the same directory as the

raw data, using an (informally?) agreed suffix/change to the
name. Sorry, we don't actually record which
flats/darks/version-of-pipeline was used.”

Good answer (?): “Reduced data is automatically uploaded
to the archive, referencing all the source frames, plus the
version of the pipeline software used (of which the archive
also has a copy).”

VO:
- a great idea that nobody is implementing!
- public access is expensive to develop & maintain
- cui bono?

Programming skill required is high
Assume you have assembled a catalogue of 100 million stars,
all near the equator (so RA,DEC are nearly cylindrical
coordinates) angles)
"Select * from `stars_table` where (`stars_table`.`ra`-
$query_ra)^2+(`stars_table`.`dec`-
$query_dec)^2<$query_search_radius_squared"

(200 million subtracts + 200 million multiplies)
Correct version:

list_of_postcodes=SDSS_tessera($query_ra,$query_dec,
$query_search_radius, $precision_limit)

for code in list_of_postcodes:
 "select * from `stars_table` where
`stars_table`.`SDSS_postcode`=$code"

- scales with the complexity of the question (which we can
limit), not database size.

SIMPLE = T
BITPIX = 16 /8 unsigned int, 16 & 32 int, 32 & 64
real
NAXIS = 2 /number of axes
NAXIS1 = 1024 /fastest changing axis
NAXIS2 = 1024 /next to fastest changing axis
OBJECT = '1803+784'
TELESCOP= 'AZT11 (125cm, 1/13),'
INSTRUME= 'Ap6E '
OBSERVER= 'Kurtanidze, Nikolashvili and Ivanidze, Petashvili'
NOTES = 'R filter'
DATEOBS= '20050824' /YYYYMMDD observation start date, UT
TIMEOBS= '16:50:34' /HH:MM:SS observation start time, UT
EXPTIME = 300.00000000000000 /Exposure time in seconds
SETTEMP= 20.000000000000000 /CCD temperature setpoint in C
CCDTEMP= 21.532738095238095 /CCD temperature at start of exposure in C
XPIXSZ = 24.000000000000000 /Image Pixel Width in microns
YPIXSZ = 24.000000000000000 /Image Pixel Height in microns
XBINNING= 1
YBINNING= 1
XORGSUBF= 0
YORGSUBF= 0
IMAGETYP= 'LIGHT '
BSCALE = 1.0000000000000000 /physical = BZERO + BSCALE*array_value
BZERO = 32768.000000000000 /physical = BZERO + BSCALE*array_value

Header from hell!

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27

