Wide and Fast

monitoring the sky in sub-second domain

S.Karpov, G.Beskin, S.Bondar

Fast Variability of the Sky: historical perspective

But it is clear that there is an awful lot to be done by ground-based astronomy. I would like just to add a little plea here for one field of ground-based optical astronomy, where, again, our knowledge is not even skin-deep yet. I am not trying to say that I know how to solve the problems there; I am only a little disappointed that there is not a stronger drive in this field. This is a subject that I would like to call short-time constant astronomy. We have been so much impressed by the integrating properties, first of the human eye and then of the photographic emulsion, that there has been a concentration—a very large concentration—on exploring further by increasing integrating times. But of course this has almost completely excluded observations of transient effects. As far as I know the only genuinely short-time constant piece of work in optical astronomy is the discovery of pulses from pulsars. Naturally, it is a lot easier if you know where to look, at what repetition rate pulses will come, etc.-I am not denying thisbut I think it is sometimes overlooked that perhaps we are missing a whole continent. I do not know exactly what I am looking for: it may be that one might discover that there are brick ends flying about space and obscuring stars every now and then for very brief moments; and it may be that there are bits in the interstellar medium that suddenly just flash up like a neon light. I just do not know. All I am trying to say is that, perhaps in the distant future, which is what I am talking about, there may be extensions of our way of looking at groundbased astronomy that will be at least as striking as, if I may repeat myself, the addition of polarization was.

H.Bondi, «Astronomy of the future», 1970

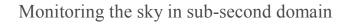
Fast Variability of the Sky: what is «fast» and what is «slow»?

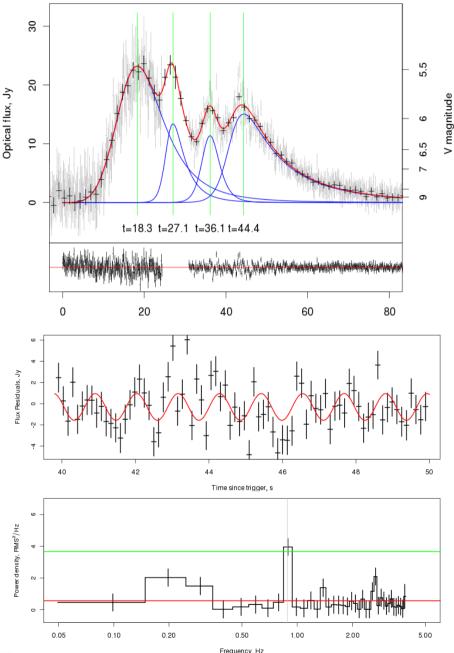
Time scale	near-Earth	inside Galaxy	nearby galaxies	cosmological distances
< 0.1 s	meteors, satellites, debris	novae, flaring	nearby	
1 s	high-orbit satellites	stars, stars	supernovae	GRBs
10 s	ingii-orbit sateriites	occultations		
100 s			intro dore	
> 1000 s	asteroids	variable stars, MACHOs	intra-day variable AGNs	supernovae

Gray background marks the classes of objects routinely targeted by existing wide-field surveys,like ASAS, LINEAR, MACHO etc

As a rule, fast optical transients have unpredictable localizations, both in time and on the sky

Gamma-Ray Bursts: open questions about optical emission


- When does it start and when does it end?
- Transition from prompt emission to afterglow
 - several hundreds of afterglows, but only about ten prompts
- Temporal variability
 - gamma is highly variable down to 10^4 s, what about optics?
- Relation to gamma emission
 - are they correlated?
 - what is the temporal lag between them? who is the first?
- Prompt emission from the short bursts
 - afterglows are basically the same. what about prompts?


All this require the detection of very first moments of the burst and, obviously, high temporal resolution of observations

Gamma-Ray Bursts: lessons from the Naked-Eve Burst

- Peaked at V~5.3 m
- Fast optical variability
 - ~9 seconds four peaks
 - ~1 second around last peak
- Simultaneous start and end
- 0.82 correlation with 2 s optical delay
- Rules out large subset of theoretical models, like External Shock and Inverse Compton ones

Naked-Eye Burst demonstrated the importance of high temporal resolution in optical study of GRBs

Malaga, 2009

Wide-Field Monitoring: different ways to be the first

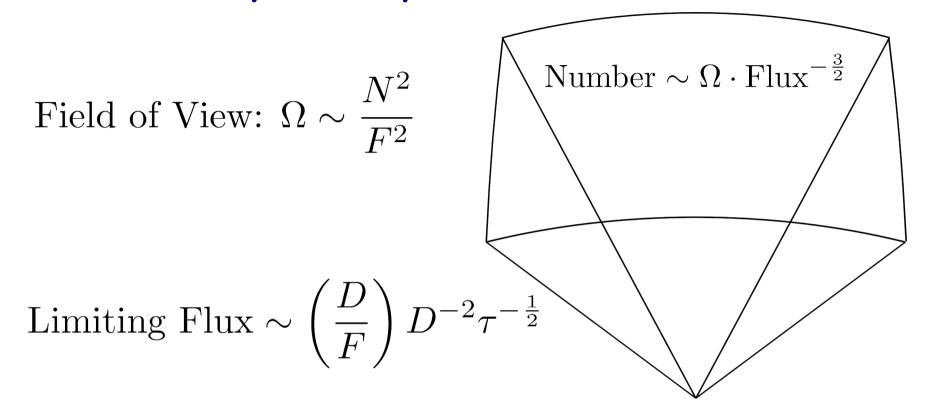
How to catch the short transient of unknown localization?

- Listen to Swift, and then move fast
 - Typical strategy of robotic alert-based systems.
 - A lot of instrument, a lot of afterglows. What about the prompt?
- Listen to Swift, but look the same direction
 - Several wide-field monitoring systems around the world
 - Several upper limits (~10^m) for the moment of the burst
 - and finally the **Naked-Eye Burst**!
- Be completely on your own
 - Routine monitoring of wide areas of the sky
 - Automatic detection and classification of transients

Wide-Field Monitoring: requirements for alert-based observations

The faster you repoint — the better

Wide-Field Monitoring: efficiency of assisted observations


Field of View:
$$\Omega \sim \frac{N^2}{F^2}$$

Limiting Flux ~
$$\left(\frac{D}{F}\right) D^{-2} \tau^{-\frac{1}{2}}$$

You need only to look al the transient position when the satellite detects it Upper limits for the prompt flux are results too

So, the shorter the focus - the better

Wide-Field Monitoring: efficiency of independent observations

Exposure shorter than the event

Number
$$\sim D\left(\frac{D}{F}\right)^{\frac{1}{2}} \tau^{\frac{3}{4}}$$

Exposure longer than the event

Number
$$\sim D\left(\frac{D}{F}\right)^{\frac{1}{2}}T^{\frac{3}{2}}\tau^{-\frac{3}{4}}$$

Short transients require short exposures

Wide-Field Monitoring: requirements for a general-purpose system

- Need wide field of view
 - the shorter the focus the better
- Need good detection limit
 - the larger the diameter the better
- Need high temporal resolution
 - short exposures and fast read-out
 - low read-out noise
- Need real-time processing software
 - real-time detection and classification of transients

Field of View:
$$\Omega \sim \frac{N^2}{F^2}$$

$$\text{Limit} \sim \left(\frac{D}{F}\right) D^{-2} \tau^{-\frac{1}{2}}$$

-

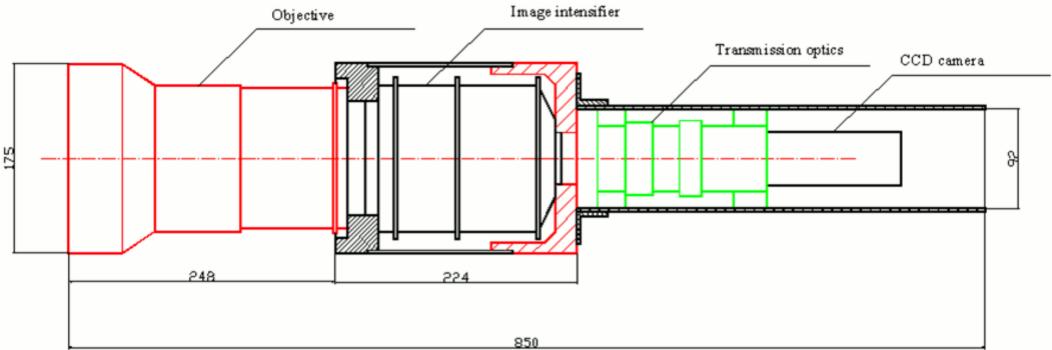
Wide-Field Monitoring: systems currently in operation

Name	Field of View (degrees)	Exposure (seconds)	Limit
WIDGET	62x62	5	10
RAPTOR A/B	40x40	60	12
RAPTOR Q	180x180	10	10
BOOTES	16x11	30	12
Pi of the Sky	33x33	10	10.5
AROMA-W	25x35	5-100	10.5-13
MASTER-VWF	20x21	5	11.5
MASTER-Net	30x30	1	9
FAVOR	17x24	0.13	10-11.5
TORTORA	24x32	0.13	9-10.5

FAVOR & TORTORA systems: overview

FAVOR (FAst Variability Optical Registrator) camera — SAO RAS, since 2003 Built in collaboration with IPI and IKI (Moscow), supported by CRDF grant

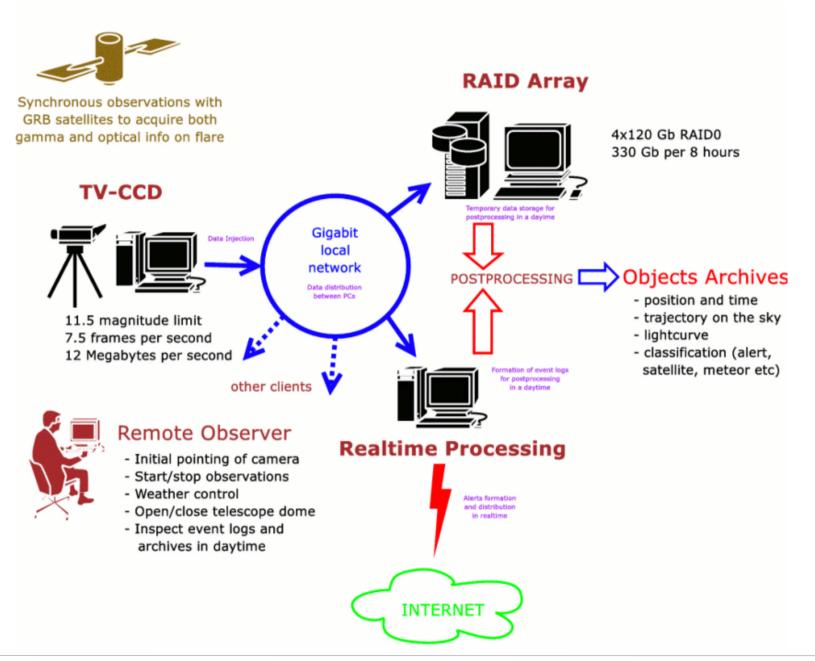
FAVOR & TORTORA systems: overview


TORTORA - Telescopio Ottimizzato per la Ricerca dei Transienti Ottici Rapidi

Two-telescope complex:

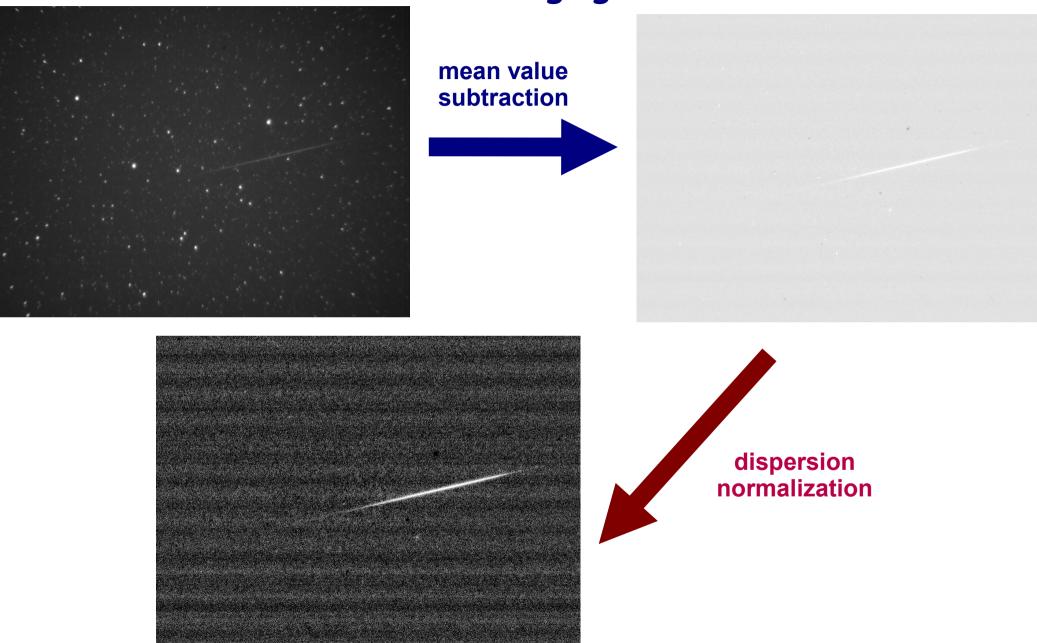
- independent detection
- automatic study

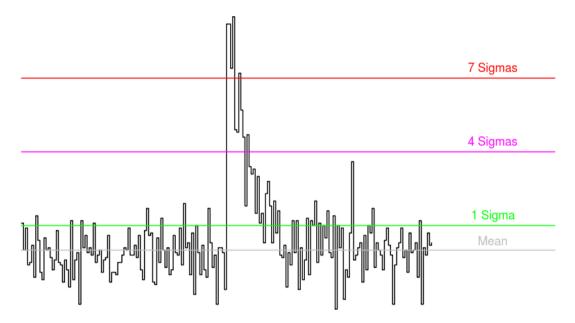
La-Silla, Chile mounted on REM since 2006 Team: SAO RAS, IPI, Bologna University, REM


FAVOR & TORTORA systems: technical details

Objective		Image Intensifier		CCD		
Diameter: Focal length: D/F: Field of view:	150 mm 180 mm 1/1.2 17x24°	type: diameter: amplification: downscale: Q.E.:	S20 90 mm 120 4.5/1 10%	type: size: exposures: scale: limit:	SONY 2/3" IXL285 1388x1036 0.128 — 10 sec 50"/pixel ~11.5 ^m for 0.13c	

Data flow rate — 20 Mb/s, per night— 600 Gb, ~200.000 frames


Real-Time Data Processing: overview

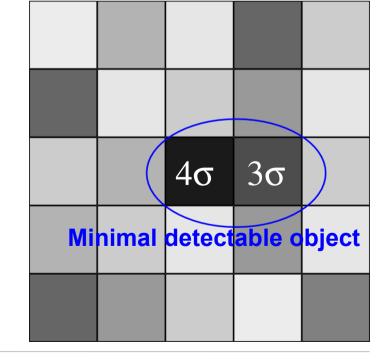

Real-Time Data Processing: overview

- Data flow rate is **20.5 Mb/s** = 160 megabit/s
- 7.5 frames per second, 1388x1036 pixels each
- Single frame processing is ten times slower!
 - object detection / SExtractor ~0.5 s
 - PSF photometry of ~1000 objects ~0.5 s
 - Classification of ~1000 objects ~0.3 s
- Solution
 - differential imaging for real-time detection and classification of transients
 - complete data storage for at least one day
 - detailed post-factum study of selected interesting events

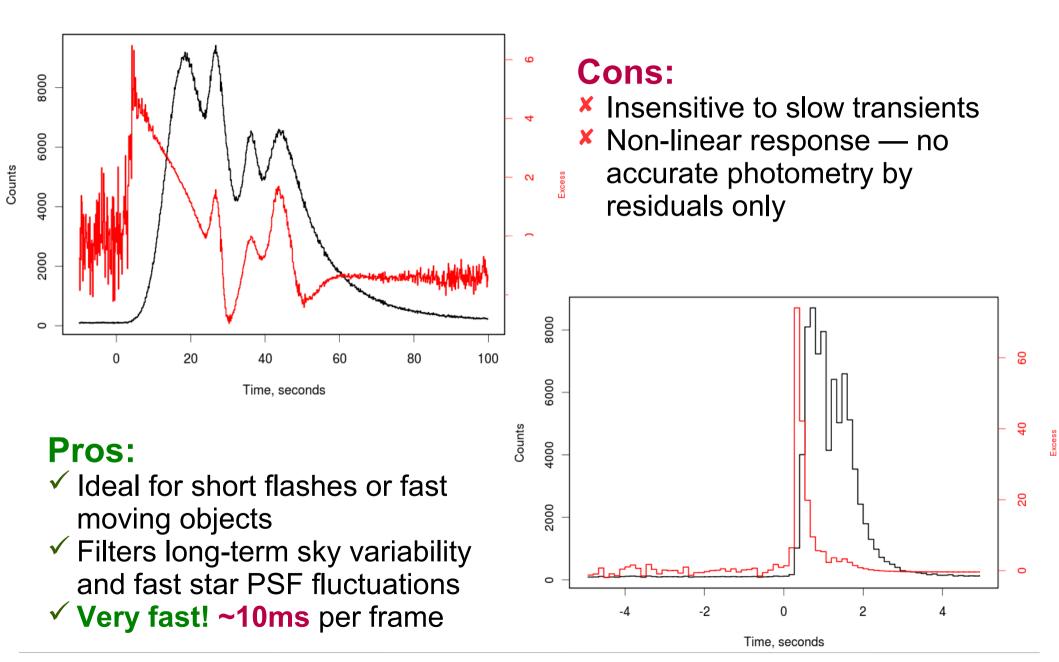
Real-Time Data Processing: differential imaging

Real-Time Data Processing: differential imaging

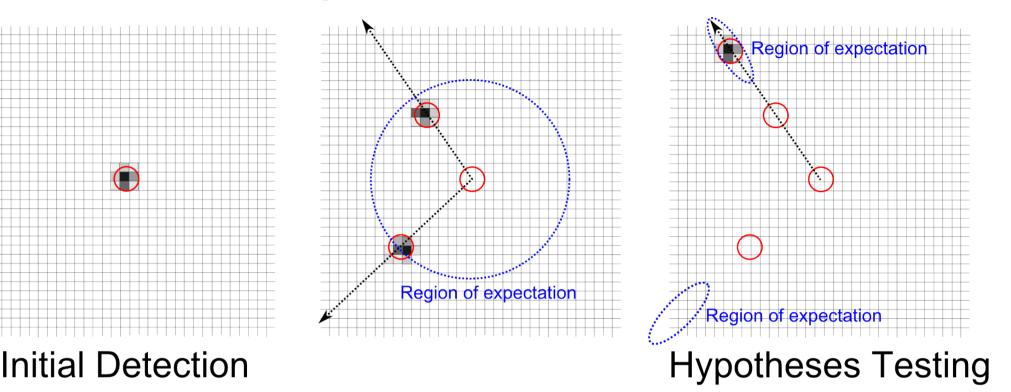
Differential thresholding in each pixel with running estimates of background mean level and dispersion


100 frames is an optimal length of estimation window

Fast clustering — extraction of extended connected regions above the threshold

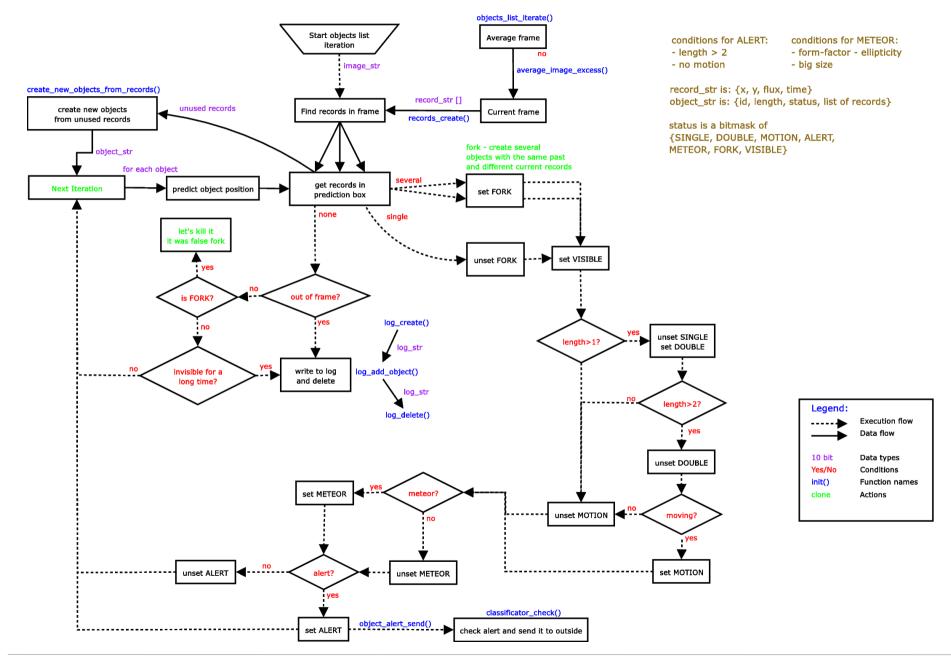

7σ — minimal detectable flux
10.5^m - 11.5^m for FAVOR
9.5^m - 10.5^m for TORTORA

0.5 <u>*false*</u> objects per frame (2 - 4 in real work)

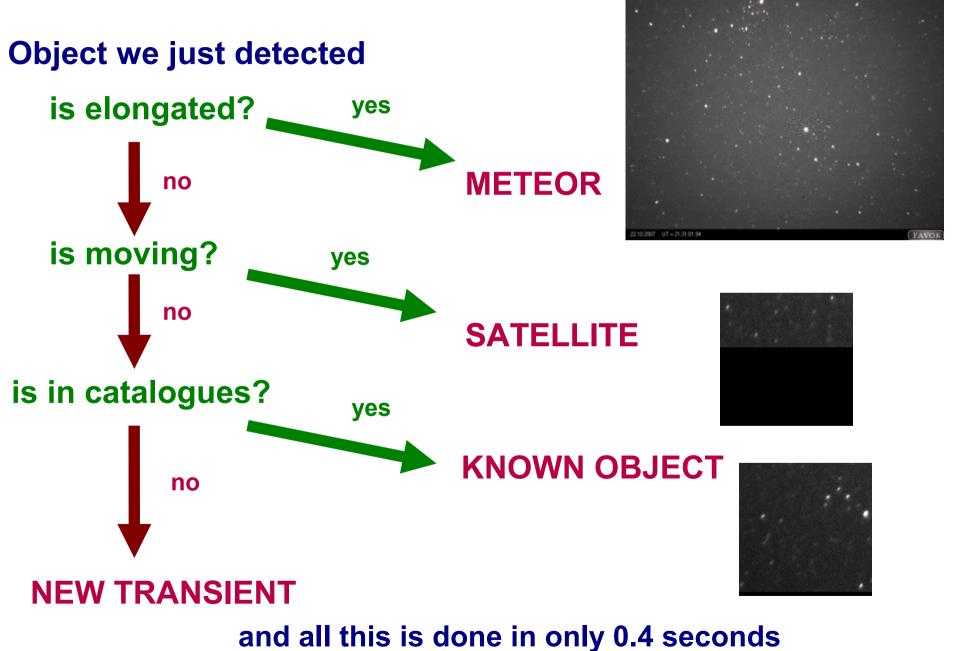

Non-ergodic behaviour - spatial and temporal dispersions differ!

Real-Time Data Processing: differential imaging

Real-Time Data Processing: three stages of classification



Motion Hypotheses Formulation


Motion direction and velocity can be estimated based on 3 frames — in 0.4 seconds

Immobility is just an extreme kind of motion

Real-Time Data Processing: decision scheme

Real-Time Data Processing: decision scheme

Real-Time Data Processing: meteors and satellites

- ~100 satellite passes per night
 - ~20 transient-like flashes per night
 - 2.5% of tracks are unidentified satellites!
 - 50-500 points per one pass good quality of the trajectories
- ~100 meteors per night
 - typical duration of 1-3 frames
 - real-time detection and logging
 - day-time processing by dedicated software
 - **Hough transform** determination of direction
 - photometry along the track start/end, light curve

Conclusions

- Wide-field monitoring is inevitable for detecting fast optical transients of unknown localization
 - GRBs, meteors, satellites, debris
- High temporal resolution is necessary for short or fast moving events
 - short bursts
 - Naked-Eye Burst
- **Data processing for such monitoring is easy**
 - detection and basic classification in 0.4 seconds
- Selection of optimal hardware parameters is not so easy
 - simple and cheap, and not very efficient
 - complex and clever, and expensive

Look forward to the talk of Gregory Beskin on Thursday!