
Example

Here is an example code, showing implementation of the simple sensor device, which has one integer
and one selection variable. The device is connected by serial port, so it provides a command line
option to specify which serial port is used, with ”/dev/ttyS0” being the default serial connection.

#include "../utils/rts2device.h"
#include "../utils/rts2connserial.h"

class Rts2DevSensorDummy:public Rts2Device
{
private:

Rts2ValueInteger *testInt;
Rts2ValueDouble *testDouble;

const char *serialDev;
Rts2ConnSerial *serialConn;

protected:
virtual int processOption (int in_opt)
{
switch (in_opt)
{

case ’f’:
serialDev = optarg;
break;

default:
return Rts2Device::processOption (in_opt);

}
return 0;

}

virtual int init ()
{
int ret;
// first call init from parent class, as that will also parse
// command line option
ret = Rts2Device::init ();
if (ret)
return ret;

serialConn = new Rts2ConnSerial (serialDev, this, BS9600, C8, NONE, 40);
return serialConn->init ();

}

virtual int setValue (Rts2Value * old_value, Rts2Value * newValue)
{
if (old_value == testInt)
return 0; // full version will write here to the device

if (old_value == testDouble)
return 0; // same as above

return Rts2DevSensor::setValue (old_value, newValue);
}

public:
Rts2DevSensorDummy (int in_argc, char **in_argv)
:Rts2Device (in_argc, in_argv, "S1")
{
createValue (testInt, "TEST_INT", "test integer value",
true, RTS2_VWHEN_RECORD_CHANGE, 0, false);

createValue (testDouble, "TEST_DOUBLE", "test double value", true);

addOption (’f’, NULL, 1, "serial port used for device communication");

serialDev = "/dev/ttyS0";
serialConn = NULL;

}
};

int main (int argc, char **argv)
{
Rts2DevSensorDummy device = Rts2DevSensorDummy (argc, argv);
return device.run ();

}

Supported devices

RTS2 have drivers for various devices which astronomers uses. Devices are integrated into an obser-
vatory environment using communication library which is part of the RTS2. New device drives can be
easily coded. Devices from following manufactures are supported in the current RTS2 code base.

• CCD detectors
Andor Technologies, Apogee, Finger Lake Instruments, SAO control board, SBIG, Starlight XPress

• Telescopes
Losmandy Gemini, Meade LX200 and other LX200 variants, OpenTPL, Paramount by Software
Bisque

• Focusers
Finger Lake Instruments, OpenTPL, Optec, Robofocuser, Finger Lake Instruments

• Filter wheels
Finger Lake Instruments, Optec, SBIG

• Photomultipliers
Optec

• Domes
Own design, OpenTPL

• Sensors and other devices
Aerotech A3200 motion controller, Cryocoon cryogenic controller, Keyithley picoampermeters,
MS257 monochromator, NewPort light source, Phytron stepper motor controller

Remote Telescope System 2nd version (RTS2) is an open source project aimed at developing a soft-
ware environment to control a fully robotic observatory. RTS2 consists of various components, which
communicate via an ASCII based protocol. As the protocol was from the beginning designed as an
observatory control system, it provides some unique features, which are hard to find in the other com-
munication systems. These features include advanced synchronization mechanisms and strategies for
setting variables. This presentation describes the protocol and its unique features. It also assesses
protocol performance, and provides examples how the RTS2 library can be used to quickly build an
observatory control system.

Introduction

Remote Telescope System development started in 2001 as a student project at the Charles University
in Prague. The goal was to develop a system capable of operating a telescope devoted to follow-up
observations of γ – ray bursts (GRBs). This task was later extended to a development of a system for
a full control of the robotic observatory, with one of the observations targets being a quick follow–ups
of the γ – ray burst optical transients.

From the early beginning RTS2 was designed as a plug–and–play system, capable to drive various
instruments and to provide a common infrastructure for them. It is clear that this component system
needs some communication layer. Initial investigation of the off–the–shelf communication libraries
led to decision to develop an own layer on top of the TCP/IP protocol stack. After years of devel-
opment this communication layer matured to a level that it easily supports requirements from new
instruments and experiments. Due to its focus on observatory control it can be considered to be better
observatory communication library then the off–the–shelf libraries available today.

Robotic observatory

Robotic observatory contains various devices. RTS2 allows them to communicate with each other.
It also provides various other services. Please see Kubánek 2006 for full description of all RTS2
functions. Following figure list RTS2 components presents in usual setup and connection between
them.

Main camera

Central server

Telescope

Selector

Guiding camera

Executor

Weather station Dome

Image processor

GCN/GRB

The protocol

Protocol uses ASCII sentences sent over TCP/IP. It design was inspired by Simple Mail Transfer
Protocol. The sentences contains sentence type and parameters. Protocol allows full two way com-
munication between observatory components.

RTS2 was designed with easy extensibility of the code in mind. Following features allows fast and
easy expansion of the code with new drivers and functionalities.

Variables which are defined in single file. They are automatically registered in FITS file. Flags
associated with variable specify when during the exposure cycle the variable value will be recorded.

States variables used for synchronization of operations carried on device.

Scripting language which automatically sequence command execution and enable end users to easily
carry different observations.

Synchronization functions which allows various synchronization scenarios.

Following is step–by–step explanation of scenario used for telescope corrections synchronization:

1. Telescope driver receives correction from image processing process

2. Telescope driver sends to central daemon and all connected devices blocking mask, indicating that
it is moving

3. Central daemon distributes moving mask to all connected devices. From now on the system will
postpone all commands which required telescope to track the position.

4. Telescope driver sends query to central daemon, asking for its blocking state

5. Central daemon distribute query to all devices which might block telescope movement

6. Devices respond to central daemon. They previously received new blocking mask from telescope
driver, so they will not start new exposure

7. Central daemon collect informations from the devices and send the resulting mask to telescope
driver.

8. If telescope can move, algorithm continue with step 11.

9. Telescope waits for updates of device blocking state.

10. Once the blocking state update is received, algorithm continues with step 8.

11. Telescope starts moving.

12. If during moving any new exposure is tried, it is postponed, as system is not ready to receive it.

13. Telescope ends moving, sends blocking state without moving bit set to the central daemon.

14. Central daemon distributes blocking state updates to the device.

15. Devices receives blocking state update, If there is any queued exposure, the exposure is started.

References

RTS2 SourceForge site – http://rts-2.sf.net

Kubánek, P. et. al., RTS2: a powerfull robotic observatory manager
in SPIE 6274: Advanced Software and Control for Astronomy, 2006

Petr Kubánek (a,b), Martin Jelı́nek (b), John French (c), Michal Prouza (d), Stanislav Vı́tek (b), Alberto J.Castro–Tirado (b) and Victor Reglero (a)

(a) GACE Valencia, Spain; (b) Instituto de Astrofı́sica de Andalucı́a (IAA-CSIC), Granada, Spain; (c) University College Dublin, Dublin, Ireland; (d) Fyzikálnı́ ústav Akademie Věd, Praha, Czech Republic

The RTS2 Protocol

