

RTS2
overview and real-life

processing of the
images
Petr Kubánek

IAA CSIC Granada, GACE Valencia

Credits

M. Jelínek, A. Castro-Tirado (IAA-CSIC) R.Cunniffe (Cork)
J.French, G.Mellady, B.McBreen, L.Hanlon (UCD, Dublin)

 M.Nekola, F.Munz, J.Štrobl, R.Hudec, M. Kúcka (AsU AV ČR, Ondřejov)
A.de Ugarte (ESO, ex. IAA), S. Vítek (FEL ČVUT, ex. IAA)

 M.Prouza (FU AV ČR), J. Frank, I. Kotov, P. O'Connel (BNL, LSST)
M. Wildi (Basel), L. Gilwood (Libnova), V. Reglero, B. Sanchéz (GACE)

... and others (which were forgoten) ...

RTS2 - history

 Remote Telescope System, 2nd Version
 There was of course RTS (1)

 .. RIP (1999-2002)
 Python, without database, ..
 Worked (57 seconds for some GRB)

 C++ (originally pure C)
 Put to public SourceForge Subversion this year
 ~ 80k lines of code (and growing)
 Open source from beginning

RTS2 - goals

 apt-get install rts2
 Configure it (in graphical wizard)
 Test it
 Connect it to network
 Run it
 Do science
 Call rts2-make-paper {journal} few times a

year, have a cup of your preferred drink and
enjoy live

RTS2 - primary goals

 GRBs (Gamma Ray Bursts)
 For that we need fully autonomous system

 Few visible during year on a single site
 Need really fast (seconds) reaction to triggers to do

interesting science

 On first look solved
 .. but more detailed look show it is not true

 Missing transient detection
 Calibrations
 ...

RTS2 - secondary goals

 Effective system for control of a fully
autonomous observatory

 Full scale solution for observatory automation,
including:
 Calibrations
 Scheduling
 Full image and data processing

 Light curves
 Transients


RTS2 - so far

 BART (1999-)
 SuperBART (2007-)
 FRAM (2006-)
 Watcher (2006-)

 BOOTES (200?2-)
 1A, 1B, IR, 2,

 BOOTES all sky
(2007-)

 LSST testing lab
(2007-)

 Markus observatory
(Switzerland) (2007-)

RTS2 - future

 University of
Columbia lunar
brightness telescope

 1.23 CAHA
 65cm @ Ondrejov

(close to BARTs)

 New Zealand (2009?)
 Reunion Island

(under negotiations)
 India (this fall?)
 Russia (next year?)
 others?

RTS2 structure

 Common library parts
 Astrocalc done by libnova (.sf.net)

 Central daemon
 Devices daemons

 CCDs, mounts, domes,..

 Services
 executor, selector, imgproc, grbd, auger, ..

 All connected by TCP/IP
 ASCII (text) protocol

RTS2 scripting

 Describes how RTS2 observe targets
 Own scripting language, described in man

rts2.script
 Simple commands for exposures, filter

changes,..
 F 0 E 10 F 1 E 20

 Loops
 F 1 for 10 { E 10 filterpos+=1 }

 And more...

RTS2 scripts

 Designed to be easy to code
 System tries to solve synchronization

 Do not expose while filter wheel is moving,..

 The question is if that is what we wanted
 Does users wants easy scripting, which will require

complex RTS2 processing, and which will
sometimes not work (and will be very hard to fix)?

 Or they are looking for scripts which will allow them
to control observing sequence, at costs that they
must handle synchronization?

More complex scripts?

 Instead of
 F 0 E 10

 You will need to write
 F 0 wait_idle E 10

 Instead of
 F 0 for 10 { E 10 filter+=1 }

 You will need to write
 F0 wait_idle for 10 { E 10 not_exposing filter+= 1 }

XML-RPC approach

 Presented by Subaru team at SPIE 2008

req = XMLRPC.request (filter=10)

req2 = XMLRPC.request (dither=10)

req.wait ()

req2.wait ()
 So they build XML-RPC script with

synchronization points (wait for commands
completion)

 To go this way, that is the question..

Image acquisition with RTS2

 Following apply to images acquired in
autonomous mode

 Image processing from command line is
possible, but not supported by RTS2 (if you will
know what to do, you will be able to handle it..)

 Images are what we get for science, yet image
processing on them is not an easy think

image acquisition and processing

 Done in executor or image processor (imgp)
 Phases

 FITS creation
 FITS population
 Image processing
 Observation processing

FITS creation

 Empty FITS file is created
 Path is created using substitutions

 See man rts2.ini for details which strings are
allowed

 Only % strings works in FITS file creation
 you cannot use $<fits key>$ at this point

 FITS file is created when camera start
exposure
 Change of state from IDLE to EXPOSING triggers

image creation

FITS population

 Keywords and values from different
components present in the system must find
their way to FITS file

 Rts2Values are optimized for writing to FITS file
 Description (FITS comment)
 Flag write (and when to write)

 Exposition start, end,..
 Important keywords less then 8 characters

Image processing

 So far done:
 Some dark & flat processing (Martin)
 Astrometry using

 RTOpera2 (whatever called)
 astrometry.net

 → feedback to telescope (corrections)
 After that, light curve extraction is beyond my

current knowledge
 Everything called from /etc/rts2/img_process script

Observation processing

 Idea is call observation processing script after
all images are acquired
 and were processed by individual image processing

script

 Currently script gets only observation ID
 But I agree it should be given access to list of

images, ..
 The problem is that with current model it is not an

easy thing to do
 → I need to change that

Current path model

 Subject to change! (it is now in rts2.ini)
 Queue, archive, trash
 I know I cannot live with it any more..

 .. and need your input how to change it

 This is overview how it works now
 To start discussion how it can work better

Current path model - example

 Image base is /images
 Epoch is 1 (or 001)
 Image comes from camera C0
 Image is for target 01234
 Exposure started on 26th June 2008 at

20:45:45.123 UT

Image live cycle

 Image is created in que_path
 /images/001/que/C0/20080626204545-123-RA.fits

 Image is processed by image processor, is
good (have on-line astrometry)
 /images/001/archive/01234/C0/object/

20080626204545-123-RA.fits

 Image does not have astrometry
 /images/001/trash/01234/C0/

20080626204545-123-RA.fits

RTS2 (image) database

 PostgreSQL
 Include image coordinates

 → possible to search for images which contains
object of interest

 Virtual Observatory extension

 Should we aim at creation of a generic tool
 Which will include possibility to store any FITS

keyword from headers

 And what about user access?
 Web, GUI, command line, XML-RPC, VO,...?

Disadvantages of current model

 Images are not grouped by observations
 Currently it is not clear from image location if

image is raw, has dark frame or flat field
subtracted, ..

 It is very hard to construct image path from
database entry
 It is possible, but it can be easier if location of

images will not change between trash and good
(archive) images

Ideal path model

 Two users
 Computer science / operative

 Needs separated images by observations
 Needs access to data by nights, months,.., so he/she can

quickly move part of data to different data storage
 Astronomer / scientists

 Needs access to all (calibrated) images of given target
 Sorted by filter,..

Ideal path model

 Use computer science model for data storage
 Something like

/images/<year>/<month>/<night>/<obsid>
/camera_hhmmss.sss.fits

 And provide tools to transfer that to astronomer
wish model
 rts2-image with strings for substitutions to move

files
 Recipes for image calibrations and processing
 Recipes for data extraction

Recipes for image processing

 Give me all images from given object
 Calibrated, raw
 With object no closer then n arcmin to image edge

 Build structure with directories for filters,..
 Extract light curve for given object

 Aperture or PSF photometry
 with calibration stars taken from the field
 or with instrument calibration from calibration runs

Problem with ideal path model..

 I need user input
 That is one of the reasons why I called this meeting

 I am sure that this is not a work for single
developer / astronomer
 That is why we need to learn how to collaborate

and share our work

RTS2 - problems

 Complexity (→ not for a single developer)
 Documentation (→ for a single developer)
 Time lost on solving operational issues

 New telescopes, cameras, problems in night runs
 Currently about 70-90% of my time, fluctuates, but

usually do not drop bellow 30%

 Range of issues
 Hardware, database, XML-RPC
 Synchronization
 Image processing

Fears?

 RTS2 have ~80k lines of code
 Developed for 8 years → 10k lines / year
 It is still not what I want
 Rule of thumb:

 Good coder can design, write, debug and document
100 lines / day

 I can do that (100 work days / year on average)
 .. but I know that is not enough ..

 Thinking telescope has ~ 200k lines
 Expect to reach more then 400k lines

RTS2 - development ideas I

 Rts2Image library extension – afternoon
discussion

 XML-RPC used as interface between hardware
and executor
 So executor / observatory control can be written in

Python,..
 Executor then can use Python / any other language

scripts for observation control
 Scripts will become observations blocks, if you like that

term

RTS2 - development ideas II

 GUI (Graphical User Interface)
 PyGTK, XML-RPC – please come to see example

during coffee break

 Web interface
 Again with XML-RPC, Web 2.0, Google Web Toolkit

 Scheduling
 Genetics algorithms, please ask for details
 My project for finishing first part of the PhD.

RTS2 - development ideas III

 Faster image transfer
 When possible, use shared memory

 Binary protocol
 Faster then ASCII, UDP possible

 Networking component
 My PhD. thesis topic
 To control, monitor and use everything
 Network scheduling
 Strong monitoring and problem solving support

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33

