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RTS2 - history

 Remote Telescope System, 2nd Version
 There was of course RTS (1)

 .. RIP (1999-2002)
 Python, without database, ..
 Worked (57 seconds for some GRB)

 C++ (originally pure C)
 Put to public SourceForge Subversion this year
 ~ 80k lines of code (and growing)
 Open source from beginning



  

RTS2 - goals

 apt-get install rts2
 Configure it (in graphical wizard)
 Test it
 Connect it to network
 Run it
 Do science
 Call rts2-make-paper {journal} few times a 

year, have a cup of your preferred drink and 
enjoy live



  

RTS2 - primary goals

 GRBs (Gamma Ray Bursts)
 For that we need fully autonomous system

 Few visible during year on a single site
 Need really fast (seconds) reaction to triggers to do 

interesting science

 On first look solved
 .. but more detailed look show it is not true

 Missing transient detection
 Calibrations
 ...



  

RTS2 - secondary goals

 Effective system for control of a fully 
autonomous observatory

 Full scale solution for observatory automation, 
including:
 Calibrations
 Scheduling
 Full image and data processing

 Light curves
 Transients
 ....



  

RTS2 - so far

 BART (1999-)
 SuperBART (2007-)
 FRAM (2006-)
 Watcher (2006-)

 BOOTES (200?2-)
 1A, 1B, IR, 2, 

 BOOTES all sky 
(2007-)

 LSST testing lab 
(2007-)

 Markus observatory 
(Switzerland) (2007-)



  

RTS2 - future

 University of 
Columbia lunar 
brightness telescope

 1.23 CAHA
 65cm @ Ondrejov 

(close to BARTs)

 New Zealand (2009?)
 Reunion Island 

(under negotiations)
 India (this fall?)
 Russia (next year?)
 others?



  

RTS2 structure

 Common library parts
 Astrocalc done by libnova (.sf.net)

 Central daemon
 Devices daemons

 CCDs, mounts, domes,..

 Services
 executor, selector, imgproc, grbd, auger, ..

 All connected by TCP/IP
 ASCII (text) protocol



  

RTS2 scripting

 Describes how RTS2 observe targets
 Own scripting language, described in man 

rts2.script
 Simple commands for exposures, filter 

changes,..
 F 0 E 10 F 1 E 20

 Loops
 F 1 for 10 { E 10 filterpos+=1 }

 And more...



  

RTS2 scripts

 Designed to be easy to code
 System tries to solve synchronization

 Do not expose while filter wheel is moving,..

 The question is if that is what we wanted
 Does users wants easy scripting, which will require 

complex RTS2 processing, and which will 
sometimes not work (and will be very hard to fix)?

 Or they are looking for scripts which will allow them 
to control observing sequence, at costs that they 
must handle synchronization?



  

More complex scripts?

 Instead of
 F 0 E 10

 You will need to write
 F 0 wait_idle E 10

 Instead of
 F 0 for 10 { E 10 filter+=1 }

 You will need to write
 F0 wait_idle for 10 { E 10 not_exposing filter+= 1 }



  

XML-RPC approach

 Presented by Subaru team at SPIE 2008

req = XMLRPC.request (filter=10)

req2 = XMLRPC.request (dither=10)

req.wait ()

req2.wait ()
 So they build XML-RPC script with 

synchronization points (wait for commands 
completion)

 To go this way, that is the question..



  

Image acquisition with RTS2

 Following apply to images acquired in 
autonomous mode

 Image processing from command line is 
possible, but not supported by RTS2 (if you will 
know what to do, you will be able to handle it..)

 Images are what we get for science, yet image 
processing on them is not an easy think



  

image acquisition and processing

 Done in executor or image processor (imgp)
 Phases

 FITS creation
 FITS population
 Image processing
 Observation processing



  

FITS creation

 Empty FITS file is created
 Path is created using substitutions

 See man rts2.ini for details which strings are 
allowed

 Only % strings works in FITS file creation
 you cannot use $<fits key>$ at this point

 FITS file is created when camera start 
exposure
 Change of state from IDLE to EXPOSING triggers 

image creation



  

FITS population

 Keywords and values from different 
components present in the system must find 
their way to FITS file

 Rts2Values are optimized for writing to FITS file
 Description (FITS comment)
 Flag write (and when to write)

 Exposition start, end,..
 Important keywords less then 8 characters



  

Image processing

 So far done:
 Some dark & flat processing (Martin)
 Astrometry using

 RTOpera2 (whatever called)
 astrometry.net

 → feedback to telescope (corrections)
 After that, light curve extraction is beyond my 

current knowledge
 Everything called from /etc/rts2/img_process script



  

Observation processing

 Idea is call observation processing script after 
all images are acquired
 and were processed by individual image processing 

script

 Currently script gets only observation ID
 But I agree it should be given access to list of 

images, ..
 The problem is that with current model it is not an 

easy thing to do
 → I need to change that



  

Current path model

 Subject to change! (it is now in rts2.ini)
 Queue, archive, trash
 I know I cannot live with it any more..

 .. and need your input how to change it

 This is overview how it works now
 To start discussion how it can work better



  

Current path model - example

 Image base is /images
 Epoch is 1 (or 001)
 Image comes from camera C0
 Image is for target 01234
 Exposure started on 26th June 2008 at 

20:45:45.123 UT



  

Image live cycle

 Image is created in que_path
 /images/001/que/C0/20080626204545-123-RA.fits

 Image is processed by image processor, is 
good (have on-line astrometry)
 /images/001/archive/01234/C0/object/

20080626204545-123-RA.fits

 Image does not have astrometry
 /images/001/trash/01234/C0/

20080626204545-123-RA.fits



  

RTS2 (image) database

 PostgreSQL
 Include image coordinates

 → possible to search for images which contains 
object of interest

 Virtual Observatory extension

 Should we aim at creation of a generic tool
 Which will include possibility to store any FITS 

keyword from headers

 And what about user access?
 Web, GUI, command line, XML-RPC, VO,...?



  

Disadvantages of current model

 Images are not grouped by observations
 Currently it is not clear from image location if 

image is raw, has dark frame or flat field 
subtracted, ..

 It is very hard to construct image path from 
database entry
 It is possible, but it can be easier if location of 

images will not change between trash and good 
(archive) images



  

Ideal path model

 Two users
 Computer science / operative

 Needs separated images by observations
 Needs access to data by nights, months,.., so he/she can 

quickly move part of data to different data storage
 Astronomer / scientists

 Needs access to all (calibrated) images of given target
 Sorted by filter,..



  

Ideal path model

 Use computer science model for data storage
 Something like 

/images/<year>/<month>/<night>/<obsid>
/camera_hhmmss.sss.fits

 And provide tools to transfer that to astronomer 
wish model
 rts2-image with strings for substitutions to move 

files
 Recipes for image calibrations and processing
 Recipes for data extraction



  

Recipes for image processing

 Give me all images from given object
 Calibrated, raw
 With object no closer then n arcmin to image edge

 Build structure with directories for filters,..
 Extract light curve for given object

 Aperture or PSF photometry
 with calibration stars taken from the field
 or with instrument calibration from calibration runs



  

Problem with ideal path model..

 I need user input
 That is one of the reasons why I called this meeting

 I am sure that this is not a work for single 
developer / astronomer
 That is why we need to learn how to collaborate 

and share our work



  

RTS2 - problems

 Complexity (→ not for a single developer)
 Documentation (→ for a single developer)
 Time lost on solving operational issues

 New telescopes, cameras, problems in night runs
 Currently about 70-90% of my time, fluctuates, but 

usually do not drop bellow 30%

 Range of issues
 Hardware, database, XML-RPC
 Synchronization
 Image processing



  

Fears?

 RTS2 have ~80k lines of code
 Developed for 8 years → 10k lines / year
 It is still not what I want
 Rule of thumb:

 Good coder can design, write, debug and document 
100 lines / day

 I can do that (100 work days / year on average)
 .. but I know that is not enough ..

 Thinking telescope has ~ 200k lines
 Expect to reach more then 400k lines



  

RTS2 - development ideas I

 Rts2Image library extension – afternoon 
discussion

 XML-RPC used as interface between hardware 
and executor
 So executor / observatory control can be written in 

Python,..
 Executor then can use Python / any other language 

scripts for observation control
 Scripts will become observations blocks, if you like that 

term



  

RTS2 - development ideas II

 GUI (Graphical User Interface)
 PyGTK, XML-RPC – please come to see example 

during coffee break

 Web interface
 Again with XML-RPC, Web 2.0, Google Web Toolkit

 Scheduling
 Genetics algorithms, please ask for details
 My project for finishing first part of the PhD.



  

RTS2 - development ideas III

 Faster image transfer
 When possible, use shared memory

 Binary protocol
 Faster then ASCII, UDP possible

 Networking component
 My PhD. thesis topic
 To control, monitor and use everything
 Network scheduling
 Strong monitoring and problem solving support
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