Detection of short optical transients of

astrophysical origin in real time

Marcin Sokołowski

msok@fuw.edu.pl

Soltan Institute for Nuclear Studies (IPJ) Warsaw, Poland

Workshop on Robotic Autonomous Observatories, Málaga, Spain, 18-21 May

- motivation for real-time detection of optical transients
- methods and main problems
- real time identification of optical transients in "Pi of the Sky"
- other existing and future solutions

Why we need real-time pipelines ?

- violent and interesting astrophysical processes act on short and very short time scales and appear as optical flashes
- short timescale domain is relatively unexplored region
- most important information can be obtained when observing events in the very early phase, early detection required for effective follow-up observations
- short timescale processes require fast detection and reaction
- data streams are getting larger and larger, impossible to store all the data permanently, must find interesting things in real time
- ⁻ its already working for γ-rays and X-rays, why not do it for optical
- relatively new idea in astronomy, future is out there ...

What can we expect there ?

- short and long gamma-ray bursts (orphaned or untriggered)
- supernovae
- catalcysmic variables, novae explosions, dwarf novae
- transients from AGNs, blazars
- early detection of near Earth objects (NEOs, PHAs)
- other, unknown type of processes ?

What we want to do ?

collect images of the sky

 typically find objects in the new sky image which were not present in the previous images nor in catalogs of stars/galaxies

• It is looking like a game "spot the differences" : Laying on beach ...

How can we do this ?

Seems to be a simple task, but ...

Two natural ways of doing the job, depend on specific needs and characteristics of the project to be done

Image subtraction

Disadvantages :

- fluctuations of stars PSF
- background fluctuations

catalogs / reference

<u>Disadvantages :</u>

more time / CPU consuming
 (not good for short timescales)

catalogs not complete (use own earlier observations, cumulative images)

<u>Illustration</u>

DIFFERENCE IMAGE

<u>Third way – in the</u> <u>middle</u>

Specific needs of "Pi of the Sky" :

find short optical flashes on 10s
 images when next image is collected

Pi of the Sky prototype in LCO

<u>Solution :</u>

- do not subtract old image from new image
- perform "fast photometry" (not full exact photometry)
- act as in catalog comparison way, but compare to reference image built from series previous images \rightarrow identify new objects on image
- multilevel triggering system, next steps have more time for deeper analysis (similar to particle physics pipelines) - reject background (fluctuations, hot pixels, cosmic ray hits, satellites, planes)

Find transient candidates

- dark frame subtraction
- apply fast photometry "Laplace filter"
- check objects on new image vs. series of previous images (reference images)
 → find new objects
- "Laplace filter" every pixel is recalculated as function of nearby pixels
- **REQUIREMENT** : $L_{new} > T_n$ (= 5 σ) and $L_{prev} < T_v$ (= 3 σ)

• **RESULT** : list of transient candidates

Background

Among candidates most are background events, which must be eliminated at next stages of the algorithm

sky background fluctuations

star PSF fluctuations

cosmic rays hitting CCD chip

• defect of CCD (hot pixels)

• artifacts (opened shutter etc)

PSF fluctuations, opened shutter

Coincidence of 2 cameras

Distance of stars from corresponding images from 2 cameras

Results of subsequent cuts

Flashes from satellites

Easy to reject by fitting a track

ellites

Rarely flashing satellites

<u>Stereo observations – "ultimate</u> weapon" against satellites

SITE A

SITE B

For pixel resolution of ~ 36'', rejection distance d ~ D / 36'':

- $D = 18 \text{ km} \rightarrow d \sim 103,000 \text{ km}$
- $D = 50 \text{ km} \rightarrow d \sim 286,000 \text{ km}$
- $D = 100 \text{ km} \rightarrow d \sim 572,000 \text{ km}$

Parallax allows for <u>real</u> real-time transient identification

More sophisticated criteria 3rd level trigger

Final verification of events, more precise checks to few events accepted by previous trigger levels. For example Hough transform – transformation to cylindrical coordinates to reject plane like events

Visual inspection of final events

Currently typical number of events < 20, possible for visual checks Most of them still remaining background but some can be ii Parallax a must to flashing satellites **Correlation with others VOEventNet** ~ 200 flashes visible on single 10s exposure, not confirmed by

other observations (still can satellites)

Off-line pipeline

Not exactly real-time at the moment, but planned to be changed in this manner

- Average or 20 (or 3) images
- Reduction (dark and flat field)
- Photometry, astrometry \rightarrow list of stars
- Normalization of brightness to V magnitudes from TYCHO catalog
- Cataloging of lightcurves to the PostgreSQL database
- · Flagging new objects added to catalog

 Algorithm analysis only new objects added to star catalog – transient candidates

Other real-time transient detectors

• mostly focused on larger time scales ~ minutes to days

• very few looking for transients of timescale of order of seconds

 typical exposures times > 30 sec , usually re-observing the field after couple of time (30 minutes)

 typically comparison to star catalogs or own reference images / catalogs

• some problems of algorithm for 10s are not present there

 flashing satellites not a problem for longer timescales and requirement of object detection on several consecutive images

Presentation of selected projects, no way to put tell about all ...

- ASAS
- BART
- BOOTES

- Pi of the Sky
- RAPTOR
- REM
- Catalina Real Time Survey (CRTS) · ROTSE
- KAIT
- LOTIS
- MASTER
- OGLE
- PanStarrs
- Palomar Transient Factory

- SkyMapper
- SNFactory
- TAROT
- TORTORA, MEGA-TORTORA
- WASP, SUPERWASP
- WATCHER

Real-Time Detection of Optical Transients (RAPTOR)

- stereo system RAPTOR-A and B
 with 38 km parallax
- wide field 40° x 40°, with fovea telescope 2° x 2° for follow-up
- multiple 30s images
- comparison of new image with previous images and with catalog
 (self-produced, started from GSC) of stars and other objects

- sending of alerts to VOEventNet and other networks in real-time
- The Telescope ALert Operations Network System (TALON) system for intercommunication of alert triggers from different telescopes
- · Building large arrays

MASTER - WVF - 4

- 4 wide field cameras FOV ~ 25.5° x 39.8° each
- timescales > 0.15s, up to 13^m on 5s exposures
- real time OT detection and classification (SN, several discovered)
- follow-up with MASTER 40cm telescope
- comparison with previous images and external star catalogs
- separate talk today

Robotic Optical Transient Search Experiment (ROTSE-III)

- MAIN GOAL : GRBs, but also orphaned afterglows from GRBs
- Exposure time typically : 20 60s
- FOV ~ 1.85° x 1.85°

- quasi real-time pipeline for transients
 (SNs)
- 2 x 30 seconds images in two sets with 30 minutes interval

• 30 SN / year, also transients of unknown origin

All Sky Automated Survey (ASAS)

- one of the first robotic telescopes ever constructed
- exposure times : 2 3 minutes
- variability timescales ~ days (every field observed once 1-2 days)
- mostly for variable stars, extensive catalogues of variables stars
- four telescopes ~ 8° x 8° each
- real time pipeline for identification of nova stars, compares new images with catalog of previous observations (> 20 new Novae found)
- automatic classification of star variability

<u>The Optical Gravitational</u> Lensing Experiment (OGLE)

• one of the first real-time pipelines

- 1.2m telescope (not robotic)
- exposure times : 180s or 225 s
- dedicated to gravitational lensing magnification events

 however, also real-time pipeline for optical transient (<u>New Objects in</u> OGLE Sky – NOOS) was developed and several supernovae and high magnification optical lensing events were identified

 differential photometry (DIA technique – Alard & Lupton 1998), subtraction of new image from cumulative reference image of same field from previous season

OGLE TELESCOPE @ LCO

CRTS / Palomar Quest (PQ)

- Images from Catalina Sky Survey
- FOV ~ 8° x 8°
- Exposure time 30s , 4 images of same field every 30 minutes
- Real-time pipeline for optical transients, image subtraction technique
- verification of transients against star catalogs USNO-B, SDSS, PQ survey

- publishing of events in real-time via VOEventNet (in less then 5 minutes from discovery)
- ~350 OTs / six months, mostly : SNs , cataclysmic variables, UV
 Ceti flare stars, blazars , Near Earth Objects

Palomar Transient Factory (PTF

- **1.2m** telescope + 50% of time on 1.5 m in Palomar Observatory
- exposure time ~ 60s , FOV ~ 7.8 deg² , limit ~ 21m
- search for SNs and exotic optical transients
- real-time transient identification (image subtraction), classification and optimal follow-up

<u>Large Synoptic Survey Telescope (LSST</u>

- To be started in 2014, 8.4 m telescope
- Exposure times > 10 seconds FOV ~ 3.5° x 3.5°
 (3.2 Giga Pixel !)

- Requires real-time analysis pipeline, strong interest in optical transients
- Twice a night make 2 images of same field

• MAIN GOALS : dark energy and matter, optical transients, Near Earth Objects (NEO), Potentially Hazardous Asteroids (PHAs)

CONtinuous CAMera (CONCAM)

- All Sky fish-eye camera (2 PI)
- 180s exposures , limit ~ 6.8m
- 11 stations around the world
- · Identification of optical transients in real-time
- Image quality check
- Comparison of new images with reference images
- Rejection of bright planets and variable stars
- Transients visible for more then 1 image or station are alerted

• OT060420 – ~10 minutes transient of ~5.5m observed by 2 stations (not 3rd one)

<u>Summary</u>

• number of real-time transient detectors of different sizes (from cm to m telescopes) is rapidly growing up

- several working solutions exist, plan to make "Pi of the Sky" real time pipeline available as an open source project
- they allow individual telescopes to identify optical transients on time scales ranging from seconds to days
- for short time scales the most promising seems to be stereo observations, but doubles the costs of the system
- RAPTOR existing, "Pi of the Sky" coming soon, will be able to send real-time triggers for short optical transients
- many detections lack confirmation and follow-up from other observers. connection to global communication networks like Virtual Observatory (VOEventNet) will allow to fully exploit potential of exiting individual systems
- Eliminate humans from the loop ? Not romantic, maybe safer ...

